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Discrete models in time and space of Fishers equation, du/d~=~~u/S.~* +f(u), in reaction 
diffusion are numerous in mathematical biology (Weinberger, SIAM J. Mar/z. Anal. 13, 353 
(1982) and the references therein). For f(u) = u( 1 -u) and no dissipation, May (Narure 261, 
459 (1976)), using the Euler discretization of the time derivative, found stable solutions 
(period 2 in time) provided the time step satisfies 2~ k < $, the linearized stability for 
period 1 solutions being 0 < k < 2. When the dissipation term in discretised form is added to 
May’s ordinary difference scheme, it is shown by Gritliths and Mitchell (IMA J. Numer. Anul. 
8, 435 (1988); Numerical Annlysis, Pitman Res. Notes in Math., Vol. 140, Longman, Sci. 
Tech., Harlow, 1986), and Sleeman (Proc. Roy. Sot. London Ser. A 425, 17 (1989)) that the 
stable period 2 in time solutions persist. Here it is shown (Sleeman, op. cit.), that when the 
dissipation term in continuous form is added to May’s difference equation, solutions period 
2 in time for each value of .X satisfy a Hamiltonian system in space. The latter, being non 
integrable, is solved numerically by symplectic difference schemes constructed to maintain the 
values of the Hamiltonain energy up to large values of the space variable (Feng Kang and his 
co-authors (J. Comput. Math. 4, 279 (1986); Lect. Notes in Math., Vol. 1297, Springer-Verlag, 
New York, 1987)). The shape of the solution, in calculations involving 200,000 space steps, 
is shown to depend crucially on the type and location of the fixed points of the Hamiltonian 
system in phase space at the position of the initial data at x=0 relative to these fixed 
points. X” 1991 Academic Press, Inc 

1. INTRODUCTION 

One of the outstanding problems in numerical analysis is the assessment of 
stability of numerical solutions of non-linear time-dependent partial difference 
equations which arise in the physical sciences and mathematical biology, either as 
models in their own right or as discretizations of non-linear partial differential 
equations. The problem is particularly severe when solutions are required for long 
periods of time and the standard Von Neumann-type stability analysis, although 
remaining a useful guide locally, is no longer adequate. Time-dependent problems 
can be classified broadly as dissipative or non-dissipative, it being possible in many 
cases to represent the latter by a Hamiltonian system the exact solution of which 
guarantees that the Hamiltonian energy remains constant with increasing time. 
Although near conservation of the Hamiltonian energy is necessary for obtaining an 
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accurate numerical solution with increasing time, it is not sufficient. Nevertheless it 
is a useful guide, and Feng Kang and his co-workers [ 1, 21 have developed sym- 
plectic difference schemes as a means of obtaining accurate numerical solutions of 
Hamiltonian systems. One of these schemes is Leap frog which Sanz Serna and 
Vadillo [7] have shown preserves the symplectic structure of the phase space in 
numerical solutions of the complex equation, 

ig+ lz12z=0. 

Here we consider discretisations first in time and then in space of Fisher’s 
equation 

$$+u(l -u), 
1, (1.1) 

where the presence of the diffusion term presents severe problems as far as analyti- 
cal studies of (1 .l ) are considered, Fife and McLeod [3], unless wave solutions of 
constant speed are assumed. 

Already in the absence of diffusion, May [S] has shown that a discrete model in 
population dynamics 

u”+ ‘(x) = U”(X) + kU”(x)( 1 - UH(x)), ?z=o, 1,2, . . . (1.2) 

has stable solutions (period 2 in time) provided the time step satisfies 2 <k < $, 
where (1.2) can be identified as the Euler discretisation of the logistic growth 
Riccati equation 

du 
-=u(l-tl). 
dt 

An extension of May’s results to a fully discretised model of (1.1) has been carried 
out by Griffiths and Mitchell [4, 61 and Sleeman [S], where periodic solutions in 
time and space are obtained for parameter values (grid sizes) beyond those required 
for linearised stability, suggesting that periodic solutions are basic to many discrete 
biological systems. Similar periodic behaviour, for discretisations of more general 
parabolic equations, has been analysed by Sleeman [9] and Stuart [ 10, 111. 

In the present study, we look for solutions of discrete forms of (1.1 ), models in 
their own right, which are period 2 in time, but no longer necessarily periodic in 
space. This is achieved by first considering the discrete time model in population 
dynamics in the general form 

cJ”+ ‘(x) = Q[ Uyx)], n = 1, 2, . ..) (1.3) 

where U’l(x) represents the population density at time n at the point x of the 
habitat. In this model the population is measured from time to time, it being 
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impossible to measure populations continuously at all times, The model (1.3), for 
various forms of the operator Q, is discussed at length in Weinberger [12] and 
other references therein. 

The addition of a diffusion term to (1.2) at a location x leads to (1.3) in the form 

un+‘(x)= U”(x)+k 9 ( > + kU”(x)( 1 - V(x)), n = 0, 1) 2, . ..) (1.4) 

where multiplication of the dissipative term by a parameter k( >O) is for 
convenience, since any positive factor of this term can be introduced (or removed) 
by making a suitable change in the x-variable. 

The first aim of the paper is to show that solutions (period 2 in time) of (1.4) 
satisfy a continuous Hamiltonian system in space. The further aim is to solve the 
Hamiltonian system numerically for large values of x, the space variable, by sym- 
plectic difference schemes, the latter devised by Feng Kang and his co-workers 
[ 1, 21 to maintain a constant value of the Hamiltonian energy. 

2. DERIVATION OF HAMILTONIAN SYSTEM 

Following [8], we now consider solutions of (1.1) which are period 2 in time for 
each value of x, viz., 

U”(x) = 41(x) + (- 1)” q,(x), n=0,1,2 ).... (2.1) 

Substitution of (2.1) into (1.4) leads to the 2-system, 

4;=4:+4:-9, 
4;=(2Y,-&l)r/,. 

(2.2) 

where the dash denotes differentiation with respect to x. This can be written in the 
first order form, 

p;=4:+4:-41 

(2.3) 
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Now the vector functions p(x), q(x) E 5%’ form a Hamiltonian system of ordinary 
differential equations if there exists a function H(p(x), q(x)) such that 

iiH dq, aH dp ----=-J 
?p, dx’ aq, d.x 

(i= I, 2). 

For the first order system (2.3) the conditions (2.4) are satisfied, provided 

and, if we introduce 

z = (P, qJT E s4, 

(2.3) may be expressed in the form 

(2.4) 

(2.6) 

where 

J= ’ I 

i > -I 0 
=-JT=-J 1 

and ZE ‘JI* is the unit matrix. In (2.6), H is the sum of the kinetic and potential 
energies and so it is a natural Hamiltonian. In addition, the Hamiltonian system 
(2.3) (or 2.6)) is deemed to be integrable (possible to find an explicit solution) if 
two integrals of motion (the Hamiltonain and one other) are known. In this case, 
the other invariant integral, 

muy be obtained from 

N=(t)) = W(O))> 

($7 H} =O, 

where { > is the Poisson bracket for the pair of differentiable functions II/ and H, 
provided, of course, it exists. In [S] it is proved that (2.5) is non-integrable in the 
sense that there is no analytic $ satisfying { $, H} = 0. 

Now, Hamiltonian formalism has the property of being area preserving (symplec- 
tic); i.e., the sum of the areas of canonical variable pairs, projected on any two- 
dimensional surface in phase space, is time invariant (Feng Kang et al. [ 1, 21). Our 
aim in solving the Hamiltonian system numerically is to test the ability of area 
preserving (symplectic) difference schemes to preserve the Hamiltonian energy in 
long time calculation. 
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Prior to discretising in space, however, we anaiyse (2.3) in relation to its fixed 
points, 

0) (0, 0, 0, OIT 

(ii) (0, 0, 1, OJT 

( 
o,o,~(k+2).5+i 

1 

T 

(iii) 

( 
0,0,&+2), -@z 

! 

T 

(iv) ) 

-I-I-I_I__.___-_.c_I_----.---II---.-----.-------.-------- 

II - rlf~(q1-2iq2-2)/2-(betrql+ 2.0000)*q2-2-bet*q1-3/3 
The method was Euler 
Iha time-step , k - 0.5000 
'Transition energy IS on ql - 2.5000 
Enargles shown a~-, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-0.5 , 0.0 , 0.05 , 0.155 , l/6 , 0.3 and 2.0 
1_________-_____1_______1_1_1____1___1__-----.-------- 

Curves : q1 VI. q2 

FIGURE 1 

(2.7) 
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obtained by putting p’, = pi = q’, = q; = 0 in (2.3). Linearised stability about the 
fixed points is obtained by putting 

which leads to 

E’ = JE + O(c2), 

____1__1_-1_11_11_-1_-----11--1-----1-1--------------- 

H - alf*(ql-Z+q2*2)/2-(bot*ql+ 0.500O)rq2-2-bet*ql^3/3 
The method was Euler 
The time-step , k - 2.0000 
‘TrensItion energy’ is on ql - 1.0000 
Energies shown a.ra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-0.5 , 0.0 , 0.05 , 0.155 , !/6 , 0.3 and 2.0 
_________-_________I_II_________________-------------- 

FIGURE 2 
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where the Jacobian is given by 

i 

0 0 2q,-1 2q2 
&OO a2 a, - 1 - (2/k) 

10 0 0 
01 0 0 1 

345 

(2.8) 

and E= (Ed, Ed, Q, Ed)‘. We see from (2.7) that the fixed points (iii) and (iv) are 

H - alf*(q1-2tq2-2)/2-(bet*ql+ 0.4167)*q2-2-bet*q1-3/3 
The method was Euler 
The tin++step , k - 2.4000 
‘Transition energy‘ is on qi - 0.9167 
Energies shown 81-e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-0.5 , 0.0 , 0.05 , 0.155 , l/6 , 0.3 end 2.0 

tlamll tonl 
3 

FIGURE 3 

581/95/2-7 
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imaginary if 0 <k < 2. Returning to the matrix J, given by (2.8), its eigenvalues 
satisfy the quartic equation, 

14-2 2q,-IL-1 1*+ 4(q?-qi)-4 
( k)‘[ ( k) ’ k] (2’9) 

I+’ q +I+? =o, 

which, at the fixed points (2.7), become 

(i) 

(ii) -,- +1 fi (2.10) 

(iii), (iv) * &@z 
i 

(k 2 2). 

Hence (i) is a centre, (ii) is a saddle point, and (iii) and (iv) exist and are saddle 
points if k 2 2. This linear prediction appears to survive non-linear effects as can be 
seen from Sleeman [S], and Figs. 1, 2, and 3 where graphs of q2 (vertical axis) 
against q1 (horizontal axis) with pi = 0 = p2 are plotted for constant Hamiltonian 
values and various values of k. These indicate the presence of a centre and saddle 
point(s) as given by (2.10). It should be remembered, however, that these diagrams 
are two-dimensional pictures of a problem in four dimensions. A significant energy 
value in (2.5) is H = i. For values of H < i, we can see the existence of closed 
periodic orbits. 

3. DISCRETISATIONS IN SPACE 

We now return to the task of discretising the Hamiltonian system (2.3) in space 
maintaining the area preservation property as far as possible; i.e., we look for sym- 
plectic difference representations of (2.3). A large selection of these are available, 
courtesy of Feng Kang and his fellow workers [ 1, 23, and for the purposes of 
comparison we choose 

(I) Euler (not symplectic) 
(II) A-II-1 (staggered Euler, symplectic) 

(III) Leap frog (symplectic). 

In order to derive these difference schemes for solving (2.3) numerically, we put 
x = mh (m = 0, 1, 2, . ..). with h the grid size in space, and use the general difference 
replacement 

where f is pI, pz, q,, q2 in turn. Euler is obtained when C$ = 1 and Leap frog when 
4 = 4. Staggered Euler is obtained by updating the values of p1 and p2 in (2.3). 
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4. STABILITY ABOUT FIXED POINTS 

I. Euler 

The difference scheme is 

where the eigenvalues, ,Ii (i = 1, 2, 3, 4) of the Jacobian of (4.1) are given by 

(0’ - h2A)(D2 - h2B) - 4h4C2 = 0, (4.2) 

whereAr2q,-2/k-1,B=2q,-1,C=q2,D=1-~.Thefixedpointsof(4.1)are 
obtained by solving the system of equations, 

4:+4:-41=0 

(2q,-~-1)q2=o 

p1 =pz=o, 

giving (pl, p2, ql, q2) the values 

(0 (0, 0, 070) 

(ii) (O,O, 120) 
(4.3) 

Fixed points (iii) and (iv) are real if k > 2. Substitution of (4.3) in turn into (4.2) 
results in the eigenvalues, 

6) 1 + ih, 1 f ih 

(ii) 1 f h, 1 + ih (4.4) 
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II. Stuggered Euler 

Updating the values of p, and pz in (2.3) leads to the difference system, 

r 

PI 
II) + I 

I 
P2 

9 
L’ 92 1 [ 

PI +m:+q:-cl,) 
= P2+w4,-(W)-l)q, 

1 

,,, 

41+~(P*+~(d+d-%)) ’ 
m=o, 1,2, . ..) (4.5) 

42 + 02 + wq, - (2/k) - l)q2) 

where the eigenvalues, p, (i= 1, 2, 3, 4), of the Jacobian of (4.5) are given by 

(P - h2A( 1 - D))(P - VB( 1 - D)) - 4h4C2( 1 - oy = 0. (4.6) 

The fixed points of (4.5) are again given by (4.3). Substitution of (4.3) in turn into 
(4.6) gives the eigenvalues, 

l-!-h2kiihJs 

6) 
l-;(l+++/~ (4,) 

i 

l+;h2k;h,‘4fh2 

(ii) 

together with extremely complicated expressions for the eigenvalues in the cases (iii) 
and (iv). 

III. Leap Frog 

The difference scheme is 

Writing (4.8) as a first-order system, we obtain the eigenvalues, Aj (i= 1, 2, . . . . 8), 
from the equation 

((1.2-1)2-44h2A~2)((A2-1)2-4h2BA2)-64h4C2~4=0. (4.9) 
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Substitution of the fixed points given by (4.3) into (4.9) gives the eigenvalues, 

-lds+ih 

(4.10) 

together with extremely complicated expressions for fixed points (iii) and (iv), the 
latter, of course, only existing if k > 2. It is interesting to compare the stability of 
the continuous and discrete systems, the latter restricted to 0 < k<2, about the 
fixed points given by (i) and (ii) of (2.7). The main conclusions from the com- 
parisons which come from (2.10) (4.4), (4.7), and (4.10) are as follows: 

Fixed point (i): In the continuous case, all four eigenvalues lie on the imaginary 
axis. With A-II-l and Leap frog, all eigenvalues give lJbl = 1, leading to neutral 
stability, the property of a centre. Euler, however, gives Ii.1 > 1 for some of the 
eigenvalues irrespective of the values of k and h, and so is unstable. 

Fixed point (ii): In the continuous case, two eigenvalues are on the imaginary 
axis and two on the real axis, the latter causing the instability associated with a 
saddle point. In the discrete case, A-II-l and Leap frog mimic the continuous case 
by having 12) = 1 for the eigenvalues corresponding to those on the imaginary axis 
for the continuous case, and )JtiI > 1 for the remaining eigenvalues. Euler has 121 > 1 
for three of the eigenvalues and Ii.1 < 1 for the fourth eigenvalue and so it is 
unstable for all paths passing through the fixed point in the phase diagram. 

5. NUMERICAL RESULTS 

A preliminary conclusion from the previous section is that the symplectic 
schemes, A-II-1 and Leap frog, appear suitable schemes for the numerical solution 
of (2.3) whereas the non-symplectic Euler scheme appears very much in the doubt- 
ful category. To confirm this, and to see how well the symplectic schemes behave 
in a calculation for large x based on (2.3), we carry out numerical experiments for 
all three schemes, where the variable quantities are 

(i) Initial values of (pi, pz, ql, q2)T, 

(ii) Time step k, 

(iii) Space step h. 

Most of the numerical results quoted are for k = f, h = lop4 leaving the initial 
condition as the variable parameter. To limit the random nature of initial data, we 
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choose the latter in the vicinity of one or another of the two real fixed points 
(kG2) of the steady (x -+ co) problem. Also the diagrams displaying the numerical 
results include q,(x) against q*(x) on the cross sectional plane p,(x) = p2(x) = 0, 
starting, in each case, from an initial point on this plane, giving an initial 
Hamiltonian value Ho. The zero p-values are, of course, not maintained for x-values 
other than zero, and so the curve in the (ql, q2) plane, on which the Hamiltonian 
has constant value H,, is plotted (with a broken line) to show the expected 
envelope of the numerical results. In addition for each numerical run, the period 2 

__-____-___1___--._1-----------.-.-------------------- 

Number of specs-steps - 200000 
1ntt1.91 (ql,q2) Is ( 0.25obo , 0.25000 ) 
and InItlally pl K p2 at-e both zero 
HamIllonl~n : 0.16667 -----> 0.16667 
h- 0.00010 end k- 0.50000 
Time method is : Eulel 
Space method is : Leap-frog 

ql -v’a- q2 : pl(B 
0.8 

0.6 

_.- 
,.I’ (,..-‘- 8 

/ 
,’ 

I 

-0.8 Ii’ 

-0.6 \ -0.4 

\. 
\ 

. . 
‘. 

-8. it! 
-.-. 0 

-- 

-8.4 

-0.6 

-0.8 
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in time solution U,(x), n = 0, 1 is plotted against x together with the value of the 
Hamiltonian. 

(1) Initial data near the centre (0, 0, 0, O)T. We start by comparing the 
trajectories of all three methods, Euler, staggered Euler (A-II-l), and Leap frog, 
with the initial point (0, 0, a, a)T. The results are shown in Figs. 4, 5, and 6, 
respectively. After 200,000 space steps, the three methods give similar results for 
q,(x) versus q2(x) and also for the period 2 solutions in time, ql(x)kq,(x), but 
display different behaviour regarding conservation of the initial Hamiltonian value. 

______1__1___-__-___-----------.---------------------- 

Number of space-steps - 200000 
Inltlal (ql,qZ) is ( 0.25000 , 0.25000 ) 
end inltielly pl b p2 at-a both zero 
IlemlltonIan : 0.16667 -----) 0.16667 
h- 0.00010 end k- 0.50000 
Time method is : Euler 
Space method is : Leap-frog 

Graph of the Hrm 11 ton! an function 

3.lffi7 

I.1867 

l.loE7 

l.lW - 

l.lKs - 

1 1 , 
0 8.25 0.5 8.75 1 1.25 1.5 1.75 2 

Xabtls 
*lo- 

FIG. 6-Continued 
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The reasonable similarity regarding the solutions of all three methods illustrates the 
strong influence of the neutrally stable centre at (0, 0, 0, O)T on discretised problems 
with initial data close to this fixed point. Because the values of q,(x) f q*(x) are 
similar in all three cases only the Euler and A-II-1 versions of the solution are 
given. 

(2) Initial data near the saddle (0, 0, 1, O)T. Once again we compare the 
performances of the three schemes, Euler, A-II-l, and Leap frog. With Euler, 

-.-.--_-1.--_1----1-_-----I-I-------------------------.--- ------- - - 

Nmhr of space-steps - 200000 
Inltl~l(ql,qz) 1s ( 0.99999 , 0.00010 ) 
. . . . . . . . . . . . . . . . . 
Hamlllonlen : 0.16667 -----) 0.16667 
h- 0.00010 and k- 0.50000 
Tim method is : Euler 
Space mzthod is : Leap-frog 

, 
1.5 2 

FIGURE 9 
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blowup occurs from an initial point (0, 0, 0.99, O.OOOl)r with ql(x) versus q2(x), the 
Hamiltonian and the period 2 solutions in time given in Fig. 7. To the scale of the 
figure, ql(x) + q2(x) is indiscernable from q,(x) -q2(x), due to the small size of 
q*(x). Because of the symplectic nature of staggered Euler and Leap frog, we chose 
a starting point (0, 0, 0.99999, O.OOO1)T, closer to the saddle fixed point, for these 
schemes. The respective numerical results are shown in Figs. 8 and 9. Staggered 
Euler is beginning to disintegrate, whereas Leap frog maintains a constant value for 
the Hamiltonian for the duration in x of the numerical experiment. 

I--_-__--__-_--_____---------------------------------- 

tlwnber of space-steps - 200000 
Inltisl (ql,qZ) is ( 0.99999 , 0.00010 ) 
and inftlally pl C p2 a~-e both zero 
llernlltonian : 0.16667 --w-m> 0.16667 
h- 0.00010 and k- 0.50000 
Time method is : Euler 
Space method is : Iasp-frcg 

e 8.25 8.5 8.76 1 1.25 1.5 1.75 2 
l 

-1 

X-aHlS 
18 

FIG. 9-Continued 
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6. CONCLUSIONS 

In view of the many possible parameter values in the numerical experiments, viz. 
grid sizes k, h ( > 0), initial condition at x = 0, and the location of the latter with 
respect to the fixed points, sufficient calculations only have been carried out to 
demonstrate main ideas of the paper. These are that: 

(I) A time discretised model of a reaction diffusion equation satisfies a 
Hamiltonian system in space. 

(II) Due to the non-integrability of the Hamiltonian system, symplectic 
difference schemes which preserve the Hamiltonian energy for x B 0 are employed 
to obtain numerical solutions up to large values of the space variable. 

(III) Of the difference schemes in space that were tested, the symplectic 
schemes (Leap frog and A-II-l) behaved better than the non-symplectic scheme 
(Euler), with Leap frog behaving best overall. 

(IV) Roud-off error did not seem to have a significant effect on the numerical 
results quoted, since accuracy to live decimal places was the same with single and 
double precision. 

(V) In view of the large number of space steps (200,000) in each numerical 
experiment, simple explicit difference schemes were chosen, two symplectic and one 
non-symplectic, the latter for comparison purposes only. 

Finally, the numerical solution of non-integrable Hamiltonian systems in general 
is without a doubt an important area for numerical analysis research in the future, 
with the many symplectic difference schemes devised by Fend Kang and his 
co-authors [ 1, 23 providing a useful starting point. 

REFERENCES 

I. K. FENG, J. Comput. Math. 4, 279 (1986). 
2. K. FENG AND M.-Z. QUIN, Lecture Notes in Mathematics, Vol. 1297, edited by A. Dold and 

B. Eckman (Springer-Verlag, New York, 1987). 
3. P. C. FIFE AND J. B. MCLEOD, Arch. Rat. Mech. Anal. 8, 335 (1977). 
4. D. F. GKIFFITHS AND A. R. MITCHELL, IMA J. Numer. Anal. 8, 435 (1988). 
5. R. M. MAY, Nature 261, 459 (1976). 
6. A. R. MITCHELL AND D. F. GRIFFITHS, Numerical Anai.ysis, Pitman Research Notes in Mathematics, 

Vol. 140 (Longman Sci. Techn., Harlow, 1986). 
7. J. M. SANZ SERNA AND F. VADILLO, SIAM J. Appl. Math., submitted. 
8. B. D. SLEEMAN, Proc. Roy. Sot. London Ser. A 425, 17 (1989). 
9. B. D. SLEEMAN, Nonlinear Waves in Active Media, edited by J. Engelbrecht, Research Reports in 

Physics (Springer-Veriag, New York/Berlin, 1989), pp. 192. 
10. A. M. STUART, IMA J. Numer. Anal. 9, 465 (1989). 
11. A. M. STUART, SIAM Rev. 31, 191 (1989). 
12. H. F. WEINBERGER, SIAM J. Math. Anal. 13, 353 (1982). 


