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Discrete models in time and space of Fishers equation, du/dt = d%u/dx* + f(u), in reaction
diffusion are numerous in mathematical biology (Weinberger, SIAM J. Math. Anal. 13, 353
(1982) and the references therein). For f(u)=u(1 —u) and no dissipation, May (Nature 261,
459 (1976)), using the Euler discretization of the time derivative, found stable solutions
(period 2 in time) provided the time step satisfies 2<k<\/g, the linearized stability for
period 1 solutions being 0 <k <2. When the dissipation term in discretised form is added to
May’s ordinary difference scheme, it is shown by Griffiths and Mitchell (IMA J. Numer. Anal.
8, 435 (1988); Numerical Analysis, Pitman Res. Notes in Math., Vol. 140, Longman, Sci.
Tech., Harlow, 1986), and Sleeman (Proc. Roy. Soc. London Ser. A 425, 17 (1989)) that the
stable period 2 in time solutions persist. Here it is shown (Sleeman, op. cit.), that when the
dissipation term in continuous form is added to May’s difference equation, solutions period
2 in time for each value of x satisfy a Hamiltonian system in space. The latter, being non
integrable, is solved numerically by symplectic difference schemes constructed to maintain the
values of the Hamiltonain energy up to large values of the space variable (Feng Kang and his
co-authors (J. Comput. Math. 4, 279 (1986); Lect. Notes in Math., Vol. 1297, Springer-Verlag,
New York, 1987)). The shape of the solution, in calculations involving 200,000 space steps,
is shown to depend crucially on the type and location of the fixed points of the Hamiltonian
system in phase space at the position of the initial data at x=0 relative to these fixed
points. € 1991 Academic Press, Inc.

1. INTRODUCTION

One of the outstanding problems in numerical analysis is the assessment of
stability of numerical solutions of non-linear time-dependent partial difference
equations which arise in the physical sciences and mathematical biology, either as
models in their own right or as discretizations of non-linear partial differential
equations. The problem is particularly severe when solutions are required for long
periods of time and the standard Von Neumann-type stability analysis, although
remaining a useful guide locally, is no longer adequate. Time-dependent problems
can be classified broadly as dissipative or non-dissipative, it being possible in many
cases to represent the latter by a Hamiltonian system the exact solution of which
guarantees that the Hamiltonian energy remains constant with increasing time.
Although near conservation of the Hamiltonian energy is necessary for obtaining an
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accurate numerical solution with increasing time, it is not sufficient. Nevertheless it
is a useful guide, and Feng Kang and his co-workers [1, 2] have developed sym-
plectic difference schemes as a means of obtaining accurate numerical solutions of
Hamiltonian systems. One of these schemes is Leap frog which Sanz Serna and
Vadillo [7] have shown preserves the symplectic structure of the phase space in
numerical solutions of the complex equation,

7222 .
o T

i

Here we consider discretisations first in time and then in space of Fisher’s
equation

(1 —u), (L1)
X

where the presence of the diffusion term presents severe problems as far as analyti-
cal studies of (1.1) are considered, Fife and McLeod [3], unless wave solutions of
constant speed are assumed.

Already in the absence of diffusion, May [5] has shown that a discrete model in
population dynamics

U (x) = U"(x)+ kU"(x)(1 — U"(x)), n=0,1,2,.. (1.2)

has stable solutions (period 2 in time) provided the time step satisfies 2 <k < ﬁ,
where (1.2) can be identified as the Euler discretisation of the logistic growth
Riccati equation

du
— =u(l —u).
i u(l —u)

An extension of May’s results to a fully discretised model of (1.1) has been carried
out by Griffiths and Mitchell [4, 6] and Sleeman [8], where periodic solutions in
time and space are obtained for parameter values (grid sizes) beyond those required
for linearised stability, suggesting that periodic solutions are basic to many discrete
biological systems. Similar periodic behaviour, for discretisations of more general
parabolic equations, has been analysed by Sleeman [9] and Stuart [ 10, 11].

In the present study, we look for solutions of discrete forms of (1.1), models in
their own right, which are period 2 in time, but no longer necessarily periodic in
space. This is achieved by first considering the discrete time model in population
dynamics in the general form

Untl(x)=Q0[U"x)), n=1,2, .., (1.3)

where U"(x) represents the population density at time n at the point x of the
habitat. In this model the population is measured from time to time, it being



NUMERICAL SOLUTION OF HAMILTONIAN SYSTEMS 341

impossible to measure populations continuously at all times. The model (1.3), for
various forms of the operator Q, is discussed at length in Weinberger [127] and
other references therein.

The addition of a diffusion term to (1.2) at a location x leads to (1.3) in the form

d2U"(x)
dx?

U"“(x):U”(x)+k( >+kU"(x)(l~U”(x)), n=0,1,2,., (14)

where multiplication of the dissipative term by a parameter k(>0) is for
convenience, since any positive factor of this term can be introduced (or removed)
by making a suitable change in the x-variable.

The first aim of the paper is to show that solutions (period 2 in time) of (1.4)
satisfy a continuous Hamiltonian system in space. The further aim is to solve the
Hamiltonian system numerically for large values of x, the space variable, by sym-
plectic difference schemes, the latter devised by Feng Kang and his co-workers
[1, 2] to maintain a constant value of the Hamiltonian energy.

2. DERIVATION OF HAMILTONIAN SYSTEM

Following [81, we now consider solutions of (1.1) which are period 2 in time for
each value of x, viz,

U'(x)=q(x)+ (—1)" q3(x), n=0,1,2,... (2.1)

Substitution of (2.1) into (1.4) leads to the 2-system,

g =q1+495—q,
" 2
92=<M1_E_1)%»

where the dash denotes differentiation with respect to x. This can be written in the
first order form,

Pi=qi+45—q
2
P/2=<2q1_'];_1)112

q1=p;
q>= pP>-
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Now the vector functions p{x), q(x)e R? form a Hamiltonian system of ordinary
differential equations if there exists a function H(p(x), q(x)) such that

¢H  dg, J0H dp, .
i 5a. " dx (i=1,2). (2.4)

For the first order system (2.3), the conditions (2.4) are satisfied, provided

{ 1 1 1
H(p,q)=5(pf+p§)+§(qf+q§)~(q1~E> =30 (2.5)
and, if we introduce
= (ps fl)T € ‘.R“,
(2.3) may be expressed in the form
dz (0 —INOH | 0H
dx_<1 OSE*J or’ (26)
where
0 1
J= = ——JT: _ -
(% o) /

and /e R? is the unit matrix. In (2.6), H is the sum of the kinetic and potential
energies and so it is a natural Hamiltonian. In addition, the Hamiltonian system
(2.3) (or 2.6)) is deemed to be integrable (possible to find an explicit solution) if
two integrals of motion (the Hamiltonain and one other) are known. In this case,
the other invariant integral,

Y(z(2)) = ¢(2(0)),

may be obtained from
¥, H} =0,

where { } is the Poisson bracket for the pair of differentiable functions  and H,
provided, of course, it exists. In [8] it is proved that (2.5) is non-integrable in the
sense that there is no analytic y satisfying {, H} =0.

Now, Hamiltonian formalism has the property of being area preserving (symplec-
tic); ie., the sum of the areas of canonical variable pairs, projected on any two-
dimensional surface in phase space, is time invariant (Feng Kang e al. [1, 2]). Our
aim in solving the Hamiltonian system numerically is to test the ability of area
preserving (symplectic) difference schemes to preserve the Hamiltonian energy in
long time calculation.
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Prior to discretising in space, however, we analyse (2.3) in relation to its fixed
points,
(i) (0,0,0,0)
(i) (0,0,1,0)T
(2.7)

(ifi) 0,0, —

e

i o= alfa(q1°2+4q2-2)/2-(bet»ql+ 2.0000)*q2~2-bet*q1-3/3
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obtained by putting p|= p5=¢g,=¢5=0 in (2.3). Linearised stability about the
fixed points is obtained by putting

(pl’ P24 ‘h)T"" (pl’ D245 qZ)T+(£1a &, &3, 84)T’
which leads to

g =Je+ O(g?),

H = alfx(q1°2+q2°2)/2~(bet*ql+ 0.5000)*q2"2-bet*q1~3/3

The method was Euler

The time-step , k = 2.0000

‘Transition energy' is on q1 = 1.0000

Energles shown are ........civeiiiiiininnnrinnennnnnns
-0.5, 0.0, 0.05, 0.155, 1/6 , 0.3 and 2.0

Hamilton 13a n Curye g1 v's q2
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where the Jacobian is given by

0 0 29,—1 29,
_ 00 29, 2q,—1—(2/k)
= 10 0 0 (28)
0 1 0 0

and £=(g,, &,, &3, £,)". We see from (2.7) that the fixed points (iii) and (iv) are

H =~ alf*(q1°2+q2°2)/2-(betxql+ 0.4167)%q2~2-bet*q1~3/3

The method was Euler

The time-step , k = 2.4000

‘Transition energy' is on ql1 - 0.9167

Energies shown @re .......c..iviiniineninnnensrannannns
-0.5, 0.0, 0.05, 0.155, 1/6 , 0.3 and 2.0

Hamiltontan Curjfv
r

FIGURE 3
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imaginary if 0 <k <2. Returning to the matrix J, given by (2.8), its eigenvalues
satisfy the quartic equation,

! 1 2
/"Ld—~2(2q,—1—7(-> ﬂ.2+[4(q§-q§)—4(1 +;) gy +1 +;]=0, (2.9)

which, at the fixed points (2.7), become

2

. - /1 2

(i) ti, +i +7
1

(i1) +1, +i 2—-k) (2.10)

i, (V) [rrr /RS (k>2)

+

Hence (i) is a centre, (ii) is a saddle point, and (iii) and (iv) exist and are saddle
points if k£ > 2. This linear prediction appears to survive non-linear effects as can be
seen from Sleeman [8], and Figs. 1, 2, and 3 where graphs of g, (vertical axis)
against ¢, (horizontal axis) with p, =0= p, are plotted for constant Hamiltonian
values and various values of k. These indicate the presence of a centre and saddle
point(s) as given by (2.10). It should be remembered, however, that these diagrams
are two-dimensional pictures of a problem in four dimensions. A significant energy
value in (2.5) is H=$. For values of H<%, we can see the existence of closed
periodic orbits.

3. DISCRETISATIONS IN SPACE

We now return to the task of discretising the Hamiltonian system (2.3) in space
maintaining the area preservation property as far as possible; i.e., we look for sym-
plectic difference representations of (2.3). A large selection of these are available,
courtesy of Feng Kang and his fellow workers [1,2], and for the purposes of
comparison we choose

(I) Euler (not symplectic)
(II) A-II-1 (staggered Euler, symplectic)
(III) Leap frog (symplectic).

In order to derive these difference schemes for solving (2.3) numerically, we put
x=mh (m=0,1,2,..), with 4 the grid size in space, and use the general difference
replacement

1
Tn=70@4.+(1=HVI S,  0<4o<,

where f'is p,, p,, ¢, g, in turn. Euler is obtained when ¢ =1 and Leap frog when
¢ = 4. Staggered Euler is obtained by updating the values of p, and p, in (2.3).
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4. STABILITY ABOUT FIXED POINTS

1. Euler
The difference scheme is
p " pithgi+ai—q) "
h(2q, —(2/k)—1
P2 _ P>+ h(2q,— (2/k) )4, , m=0,1,2, .., (4.1)
q, q:+hp,
q q>+ hp;

where the eigenvalues, 4; (i=1, 2, 3, 4), of the Jacobian of (4.1) are given by

(D? — h*A)(D*— h*B) — 4h*C? =0, (4.2)

where A=2q,—2/k—1, B=2q,— 1, C=¢q,, D=1- A The fixed points of (4.1) are
obtained by solving the system of equations,

91+95—q,=0
2
(2‘11“%“1>42=0
p1=p2=0,
giving (py, p2, 41, 42) the values
(i)  (0,0,0,0)
(i)  (0,0,1,0)
4.3)
111 = (
(iii) <0, 0,5-‘}-*,% k —4)
. 11 1
(iv) <0’0’§+E’ % k2 —4)

Fixed points (iti) and (iv) are real if k = 2. Substitution of (4.3) in turn into (4.2)
results in the eigenvalues,

[ 2
(1) 1tih, 1 Lih 1+E

(2—k) (4.4)

(i“’} 140 L0+ /BT (k>2)
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II. Staggered Euler
Updating the values of p, and p, in (2.3) leads to the difference system,

m

P mt pl“"’(‘]%*"]% q)

pa| | P2t 2= Q)= D C m=0,1,2,., (45)
q, ‘I1+h(P1+h(Q1+Q2"]1))
q> g>+h(p,+h(2q, — (2/k) - 1)q,)

where the eigenvalues, u,; (i=1, 2, 3, 4), of the Jacobian of (4.5) are given by

(D> = h*A(1 — D))(D*— h*B(1 — D)) — 4h*C*(1 — D)*=0. (4.6)

The fixed points of (4.5) are again given by (4.3). Substitution of (4.3) in turn into
(4.6) gives the eigenvalues,

__2 2
12h2 4—h

S

1, 1
1+5h2i§h\/4+h2

ARt B

together with extremely complicated expressions for the eigenvalues in the cases (iii)
and (iv).

4.7)

III. Leap Frog

The difference scheme is

p ! 9 +9—q, " 20
2g,—(2/k)—1
b2 —2h (2, —(2/k) )92 n P2 ’ m=0,1,2, ... (48)
q1 P qi
9 P> q;

Writing (4.8) as a first-order system, we obtain the eigenvalues, A, (i=1, 2, ..., 8),
from the equation

((A2 = 1)2 = 4h2AA2)((A2 — 1) — 4h2B)?) — 64h*C2i4 = 0. (4.9)
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Substitution of the fixed points given by (4.3) into (4.9) gives the eigenvalues,

1—h2+zh

(i)
+ [1—~ 1+ +1h /1+—

T/ 1+hth

(ii) ) 2—k 2—k
— 2 — /) —_—
+ [1—h ( A >i1h / T

together with extremely complicated expressions for fixed points (iii) and (iv), the
latter, of course, only existing if k> 2. It is interesting to compare the stability of
the continuous and discrete systems, the latter restricted to 0 <k <2, about the
fixed points given by (i) and (ii) of (2.7). The main conclusions from the com-
parisons which come from (2.10), (4.4), (4.7), and (4.10) are as follows:

Fixed point (i): In the continuous case, all four eigenvalues lie on the imaginary
axis. With A-II-1 and Leap frog, all eigenvalues give |4] =1, leading to neutral
stability, the property of a centre. Euler, however, gives || > 1 for some of the
cigenvalues irrespective of the values of & and 4, and so is unstable.

Fixed point (ii): In the continuous case, two eigenvalues are on the imaginary
axis and two on the real axis, the latter causing the instability associated with a
saddle point. In the discrete case, A-II-1 and Leap frog mimic the continuous case
by having |4| =1 for the eigenvalues corresponding to those on the imaginary axis
for the continuous case, and {4| > 1 for the remaining eigenvalues. Euler has || > 1
for three of the eigenvalues and |i| <1 for the fourth eigenvalue and so it is
unstable for all paths passing through the fixed point in the phase diagram.

(4.10)

5. NUMERICAL RESULTS

A preliminary conclusion from the previous section is that the symplectic
schemes, A-II-1 and Leap frog, appear suitable schemes for the numerical solution
of (2.3) whereas the non-symplectic Euler scheme appears very much in the doubt-
ful category. To confirm this, and to see how well the symplectic schemes behave
in a calculation for large x based on (2.3), we carry out numerical experiments for
all three schemes, where the variable quantities are

(i) Initial values of (py, pa, 415 42)7,
(ii) Time step k,
(iii) Space step 4.

Most of the numerical results quoted are for k=4, #=10"* leaving the initial
condition as the variable parameter. To limit the random nature of initial data, we
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choose the latter in the vicinity of one or another of the two real fixed points
{k <2) of the steady (x — o0) problem. Also the diagrams displaying the numerical
results include ¢,(x) against ¢,(x) on the cross sectional plane p,(x)= p,(x)=0,
starting, in each case, from an initial point on this plane, giving an initial
Hamiltonian value H,. The zero p-values are, of course, not maintained for x-values
other than zero, and so the curve in the {(gq,, g,) plane, on which the Hamiltonian
has constant value H,, is plotted (with a broken line) to show the expected
envelope of the numerical results. In addition for each numerical run, the period 2

P L L L L LT LT T PPy TPy P N LI T

Number of space-steps =« 200000

Initial (qi,q2) is ( 0.25000 , 0.25000 )
and inftially pi & p2 are both zero

Hamfltonian : 0.16667 ----- > 0.16667
h ~ 0.00010 and k = 0.50000

Time method Is : Euler
Space method is : Leap-frog

& p2(8) are zero

qf -v's- q2 : pi

8.6

B ~X W) ND

-8.6}

-0.8¢

ql-aris

FIGURE 6
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in time solution U, (x), n=0, 1 is plotted against x together with the value of the
Hamiltonian.

(1) Initial data near the centre (0,0,0,0)". We start by comparing the
trajectories of all three methods, Euler, staggered Euler (A-II-1), and Leap frog,
with the initial point (0,0, §, })". The results are shown in Figs.4, 5, and 6,
respectively. After 200,000 space steps, the three methods give similar results for
g,(x) versus g,(x) and also for the period 2 solutions in time, g,(x) % ¢,(x), but
display different behaviour regarding conservation of the initial Hamiltonian value.

gfrtoold. /binseeh /i L o

Mumber of space-steps = 200000

Initial (qi,q2) is ( 0.25000 , 0.25000 )
and initially pl & p2 are both zero

Hamiltonfan : 0.16667 ----- > D.16667
h = 0.00010 and k = 0.50000

Time method 15 : Euler
Space method is : Leap-frog

............. P R L L L L L L L L L e T P T TP Y

Graph of the Hami{ltonian function

8.1657}

1667

@ =X ey

0.1667 |-

X-auls

F1G. 6—Continued
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The reasonable similarity regarding the solutions of all three methods illustrates the
strong influence of the neutrally stable centre at (0, 0,0, 0)T on discretised problems
with initial data close to this fixed point. Because the values of ¢,(x)+ g,(x) are
similar in all three cases only the Euler and A-II-1 versions of the solution are
given.

(2) [Initial data near the saddle (0,0, 1,0)". Once again we compare the
performances of the three schemes, Euler, A-II-1, and Leap frog. With Euler,

csvscemas D P Ny yepuguye weam T =S

Number of space-steps = 200000

nit1a1(qf,4R2) s ( 0.99999 , 0.00010 )
Hamiltonisn : 0.16667 ~---- > 0.16667
h « 0.00010 and k = 0.50000

Time mathod is : Euler

Space method is : Leap-frog

------------------------------------------------------

1.5

1.5 2

FIGURE 9
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blowup occurs from an initial point (0, 0, 0.99, 0.0001)T with g,(x) versus g,(x), the
Hamiltonian and the period 2 solutions in time given in Fig. 7. To the scale of the
figure, g,(x)+ g,(x) is indiscernable from g,(x)—g,(x), due to the small size of
g,(x). Because of the symplectic nature of staggered Euler and Leap frog, we chose
a starting point (0, 0, 0.99999, 0.0001)", closer to the saddle fixed point, for these
schemes. The respective numerical results are shown in Figs. 8 and 9. Staggered
Euler is beginning to disintegrate, whereas Leap frog maintains a constant value for
the Hamiltonian for the duration in x of the numerical experiment.
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and initially p1 & p2 are both zero

Hamiltonian : 0.16667 ----- > 0.16667
h = 0.00010 and k = 0.50000

Time method is : Euler
Space method is : leap-frog

.................... e Y L L L T T X P PP Y Y

Graph of the Hamiltonian functiaon

0.1667}

B.1667 +

A7

O =X &y

.16157L

[+~]

B.1667}

X-anls

F1G. 9—Continued



358 MITCHELL, MURRAY, AND SLEEMAN
6. CONCLUSIONS

In view of the many possible parameter values in the numerical experiments, viz.
grid sizes k, h (> 0), initial condition at x =0, and the location of the latter with
respect to the fixed points, sufficient calculations only have been carried out to
demonstrate main ideas of the paper. These are that:

(I) A time discretised model of a reaction diffusion equation satisfies a
Hamiltonian system in space.

(II) Due to the non-integrability of the Hamiltonian system, symplectic
difference schemes which preserve the Hamiltonian energy for x >0 are employed
to obtain numerical solutions up to large values of the space variable.

(ITT) Of the difference schemes in space that were tested, the symplectic
schemes (Leap frog and A-II-1) behaved better than the non-symplectic scheme
(Euler), with Leap frog behaving best overall.

(IV) Roud-off error did not seem to have a significant effect on the numerical
results quoted, since accuracy to five decimal places was the same with single and
double precision.

(V) In view of the large number of space steps (200,000) in each numerical
experiment, simple explicit difference schemes were chosen, two symplectic and one
non-symplectic, the latter for comparison purposes only.

Finally, the numerical solution of non-integrable Hamiltonian systems in general
is without a doubt an important area for numerical analysis research in the future,
with the many symplectic difference schemes devised by Fend Kang and his
co-authors [ 1, 2] providing a useful starting point.

REFERENCES

t. K. FENG, J. Comput. Math. 4, 279 (1986).

. K. FENG AND M.-Z. QuiN, Lecture Notes in Mathematics, Vol. 1297, edited by A. Dold and
B. Eckman (Springer-Verlag, New York, 1987).

. P. C. Fire anD J. B. McLEoD, Arch. Rat. Mech. Anal. 8, 335 (1977).

. D. F. GRIFFITHS AND A. R. MITCHELL, IMA J. Numer. Anal. 8, 435 (1988).

. R. M. May, Nature 261, 459 (1976).

. A. R. MitcHELL AND D. F. GrIFFITHS, Numerical Analysis, Pitman Research Notes in Mathematics,
Vol. 140 (Longman Sci. Techn., Harlow, 1986).

7. J. M. SANZ SERNA AND F. VaADILLO, SIAM J. Appl. Math., submitted.

8. B. D. SLEEMAN, Proc. Roy. Soc. London Ser. A 425, 17 (1989).

9. B. D. SLEEMAN, Nonlinear Waves in Active Media, edited by J. Engelbrecht, Research Reports in

Physics (Springer-Verlag, New York/Berlin, 1989), pp. 192.

10. A. M. STUART, IMA J. Numer. Anal. 9, 465 (1989).

1, A. M. STUART, SIAM Rev. 31, 191 (1989).

12. H. F. WEINBERGER, STAM J. Math. Anal 13, 353 (1982).

[

[ VL R - A Y]



